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Abstract 

Mosquito monitoring is essential for limiting the spread of mosquito-borne 

diseases using vector control. However, existing methods are insufficient due to their 

unsustainability and risky manual labor. This study develops the Low-cost Acoustic 

Signal Sensing Mosquito Observation Channel (LAMOC) to identify the presence of 

mosquitoes (Culex sp., Anopheles sp., Aedes aegypti) through bioacoustics and 

wingbeat frequencies acquired from audio recordings. Internet of Things (IoT) was also 

used to send the data to a server and display it onto a website. LAMOC utilizes the 

Raspberry Pi for core processing, Python for program development, and PHP and 

MySQL for the development of the server and website. Fast Fourier Transform (FFT) 

and support vector machine (SVM) were used to classify the mosquito species. Cross-

validation was used to determine the multi-class classification accuracy, and it was 

found that A. aegypti (male) (99.30%) has the highest accuracy while background noise 

(90.47%) has the lowest. Overall, LAMOC achieved an accuracy of 94.74% which 

exceeded existing devices for mosquito monitoring. Further studies can explore other 

designs for enclosures, utilize higher quality microphones, and examine more machine 

learning techniques. 

 

Keywords: mosquito monitoring; bioacoustics; machine learning; wingbeat 

frequency; dengue  
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Introduction 

 Background of the Study 

Mosquitoes are considered as one of the most lethal animals in the world, 

carrying numerous diseases that give rise to millions of deaths every year (World Health 

Organization, 2016). They transmit multiple fatal diseases such as dengue,  yellow 

fever, chikungunya (carried by Aedes aegypti), malaria, filariasis (Anopheles sp.), and 

Japanese encephalitis (Culex sp.) (Tolle, 2009; European Centre for Disease Prevention 

and Control, 2016). Tropical countries, such as the Philippines, are ideal breeding 

grounds for mosquitoes because of the favorable temperature, rainfall, and humidity 

levels (Huber et al., 2018). 

Mosquito monitoring, the process of tracking and recording changes in 

mosquito population, is used to analyze if the current control strategy is effective and 

gives information on the possible diseases mosquitoes may carry to determine what 

public health measures must be taken (Tolle, 2009). Currently, the most widespread 

approach is the traditional method of mapping out transition intensities using human-

landing catch. Despite its proven effectiveness, this approach is both unsustainable and 

potentially dangerous for the surveyor due to its repetitiveness and the need for close 

contact with the insect (Hiscox, 2014). 

An alternative solution is the use of acoustic signal sensing, or bioacoustics, 

wherein flight acoustic recordings of insects (in this case, mosquitoes) are analyzed 

(Whytock & Christie, 2016). In flight, insects create a sinusoidal tone based on the 

frequency of their wing movement (Arthur et al., 2013). Mosquitoes, in particular, have 

varying wing beat frequencies that set them apart from other insects (Robert, 2009); 

thus, it is possible to identify if a certain animal is a mosquito through acoustic 

recordings. Despite the potential of bioacoustics in animal monitoring, current 
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commercially available acoustic sensing devices are expensive even for researchers 

(Whytock & Christie, 2016).  

A viable alternative to bioacoustic devices are single-board computers. These 

computers contain multiple ports for different microphones, storage options, and 

environmental sensors needed for a bioacoustic device (Avisoft, 2020). Single-board 

computers have found applications in the industrial market, smart devices, and even 

military equipment due to their high processing power, compact size, and high 

customizability (Johnston et al., 2018). The most popular single-board computer is the 

Raspberry Pi due to its low price, ease of use, and promising features (Vujović & 

Maksimović, 2014).  

Interconnecting devices can access information across different platforms via 

an established server (Gubbi et al., 2013). This can be done with the use of Internet of 

Things (IoT) technology,  which allows objects to communicate with one another 

(Rushikesh & Sivappagari, 2016). Additionally, its wide support from the community 

and easy application makes it a good choice for multiple projects. Application of this 

technology will allow remote real-time access of data. This can be done through a 

website or application connected to the server of the single-board computer.  
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Statement of the Objectives 

The study developed a device, Low-cost Acoustic Signal Sensing Mosquito 

Observation Channel (LAMOC), to detect the presence of disease-carrying mosquitoes. 

Specific objectives include: 

1. To develop a device that can identify the presence of mosquitoes from 

their wingbeat frequencies using a single-board computer; 

2. To obtain mosquito species classification accuracy using confusion 

matrices and multi-class classification 

3. To send collected data (audio, temperature, humidity, metadata) to a 

server using Internet of Things (IoT) technology that can be accessed 

through a developed website 

Significance of the Study 

Mosquito monitoring provides information on the transmission risks of the 

diseases carried and the effectiveness of the current method of population control 

(Hiscox, 2014). Few studies have been conducted on the prevalence of mosquitoes in 

both rural and urban areas in the Philippines (Sia Su et al., 2014). Instead of performing 

the traditional method of manual work in mosquito monitoring using mosquito traps, 

local government units and community health centers can use LAMOC to make the 

process automated, more sustainable, and efficient. This will inform them on when and 

where the said disease-carrying mosquito species are increasing in population in order 

to formulate countermeasures and prepare for a possible mosquito-borne disease 

outbreak. Moreover, this helps in lowering the number of diseases transmitted by 

mosquitoes. The user-friendliness and comprehensibility of the device and interface 

will also make the analysis of the data much easier for the user. Furthermore, the use 
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of IoT eliminates any possible risk in conducting mosquito monitoring manually in a 

certain place, as all the data is easily accessible on any device in real-time. Moreover, 

this study is a significant addition to existing research on mosquito monitoring (leaning 

towards the traditional methods), and acoustic signal sensing (insufficient research in 

technology applications, especially in device development and construction). 

Scope and Limitations of the Study 

The main focus of the study is to develop a mosquito monitoring device; thus, 

any acoustic recordings that are not identified as coming from mosquitoes are not 

analyzed. The program will classify these recordings as either belonging to a mosquito 

or not. Only three mosquito species, namely Culex sp., Anopheles sp., and Aedes 

aegypti, are used for species identification training. These species are chosen because 

they are the most common species of disease-carrying mosquitoes (Tolle, 2009). 

While multiple devices are preferred, a single module is enough to prove that 

LAMOC can identify the presence of mosquitoes and display information to a website. 

Unfortunately, the device was not tested under laboratory conditions (breeding 

mosquitoes for recording audio) due to the associated health risks. Instead, the audio 

samples needed for program training were acquired from other researchers with similar 

samples. 

Lastly, due to the limited scope of the study, only the chosen feature extraction 

method and machine learning algorithm are used; there is no comparison between 

multiple kinds and techniques of each category.  
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Review of Related Literature 

This chapter provides an extensive review of the various variables in the study. 

It will explore the history of mosquito monitoring, application of bioacoustics in 

technology, usage of single-board computers (namely, Raspberry Pi) in various 

researches, emergence of Internet of Things, the programming languages needed to 

develop the device and its program. 

Mosquitoes 

Mosquitoes, from the order Diptera and family Culicidae, comprise of 

approximately 3,500 species worldwide. According to Tolle (2009), among the most 

common species that carry diseases are Aedes aegypti (yellow fever, dengue, 

chikungunya), Anopheles sp. (malaria, filariasis), and Culex sp. (West Nile, Japanese 

encephalitis, filariasis) (see Figure 1). In order to determine if the current method of 

regulation of mosquito population is adequate, mosquito monitoring is needed (Tolle, 

2009). 

 

Figure 1. Anopheles annulipes (left), Aedes aegypti (middle), Culex annulirostris 

(right) 

Noted. Adapted from NSW Arbovirus Surveillance & Vector Monitoring Program, by 

S.L. Doggett (2003) & Dept. Medical Entomology (2002). Retrieved from 

http://medent.usyd.edu.au/arbovirus/mosquit/photos/mosquitophotos.htm 

Mosquito monitoring. Effective monitoring of the insect’s population can 

provide vital information about the disease transmission risks and the effectiveness of 
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the vector control. This is done by mapping out the transmission intensity of the disease 

in a certain area at a particular time (Hiscox, 2014). The data collected are crucial in 

understanding the epidemic potential brought by the insect and in preparing for 

effective control strategies for the diseases carried (Kröckel et al., 2006). 

Human-landing catch is considered as the most straightforward, dependable, 

and favored method because it measures the frequency of contact between humans and 

mosquitoes (Dia et al., 2005). However, it poses a number of risks, such as being 

dependent on the skills of the mosquito collector and the associated health concern on 

the direct contact with the insect. Due to its hazards and repetitiveness, other methods 

of mosquito monitoring had to be explored (Dia et al., 2005). 

In 2017, a new approach in mosquito monitoring was explored which utilizes 

bioacoustics (Mukundarajan et al., 2017). Since there are varying wing beat frequencies 

for each species of mosquito, acoustic surveillance was proposed as a method of 

mosquito monitoring. Using mobile phones as audio and location recorders, a crowd-

sourced, continuous, and large-scale data acquisition of the sounds of mosquitoes in 

flight was possible. The study proposed a promising new method for mosquito 

surveillance. 

In this study, the concept of acoustic signal sensing, adapted from the 

aforementioned study of Mukundarajan et al. (2017), will be used as the method of 

mosquito monitoring. Instead of mobile phones, however, single-board computers will 

serve as the main component and recorder of the constructed device. This is due to the 

unnecessary pre-installed applications and lower power consumption compared to 

modern devices (Anwaar & Ali Shah, 2015). 
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Figure 2. Wing beat frequencies for selected mosquito species 

Note: Reprinted from “LOCOMOBIS: A Low-cost Acoustic-based Sensing System to 

Monitor and Classify Mosquitoes” by D. Vasconcelos, N. Nunes, M. Ribeiro, C. 

Prandi, & A. Rogers, 2019, 2019 16th IEEE Annual Consumer Communications & 

Networking Conference, 1-6. 

 

Varying wing beat frequencies of four species of mosquitoes from Vasconcelos 

et al. (2019) are shown in Figure 2. The average wing beat frequencies of the species 

Culex is 520 to 620 Hz, species Culiseta is 340 to 580 Hz, Aedes aegypti (female) is 

540 to 580 Hz, and Aedes aegypti (male) is 880 to 920 Hz (Vasconcelos et al., 2019). 

The average wing beat frequency of species Anopheles is 320 to 480 Hz (Caprio et al., 

2001). These values will be used as references for the samples and data that will be 

collected in this study. 

Bioacoustics 

 In the field of bioacoustics, the calls and songs of animals are studied in an effort 

to discover patterns in their behavior, communication, and mating (McGregor, 2012). 
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Bioacoustics often finds its applications in the field of technology, specifically in 

tackling biodiversity. The Automated Remote Biodiversity Monitoring Network (Aide 

et al. (2013) developed their own hardware and software for automating data 

acquisition, data management, and species identification based on audio recordings. A 

website that relays the data in real-time to a project server was also developed. 

However, the wide scope of animals it can identify makes it difficult to improve on. 

Whytock and Christie (2017) developed the Solo audio recorder, an open-

source, inexpensive, and customizable system for collecting long-term and high 

definition audio data. It was proposed as an alternative to the expensive, rarely user-

serviceable, and uncustomizable commercial bioacoustic devices. Instead of creating 

an entirely new program for recording audio from scratch, the software of the Solo 

audio recorder may be used. The study utilized the Raspberry Pi, one of the most 

popular single-board computers in the market, as the main component of the device. 

The study of Vasconcelos et al. (2019) focused on developing a bioacoustic 

sensing system that monitors and classifies exclusively mosquitoes, namely Culex sp., 

Culiseta sp., and Aedes aegypti. Instead of using the Raspberry Pi (the device utilized 

by Whytock and Christie in 2017), this study utilized the Particle Photon 

microcontroller. 

 In this study, bioacoustics will be used in analyzing the acoustic recordings 

acquired from mosquitoes only, much like the system constructed by Vasconcelos 

(2019). The research will classify the most common mosquitoes in the Philippines, 

namely Aedes aegypti, Culex, and Anopheles (Tolle, 2009), as opposed to the project 

of Vasconcelos (2019) which classified Culiseta instead of Anopheles. The constructed 

device will only focus on examining recordings obtained in the deployed area. 

Single-board computers 
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Table 1. Comparison between commercially available single-board computers. Reprinted 

from “Commodity single board computer clusters and their applications,” by S.J. 

Johnston et al., 2018, Future Generation Computer Systems 89, 203. 

Board RAM Price (Php*) I/O 

Raspberry Pi 
1 B+ 

512 MB 1 500 Audio, Ethernet, GPIO, HDMI, microSD, USB2 

Raspberry Pi 
3 B+ 

1 GB 1 750 Audio, Bluetooth, Gigabit Ethernet, GPIO, HDMI, microSD, 
USB2, WiFi 

Raspberry Pi 
Zero W  

512 MB 500 Bluetooth, GPIO, HDMI, I2C, I2S, microSD, SPI, USB2, 
WiFi 

Odroid C2 2 GB 2 300 eMMC/microSD, Gigabit Ethernet, GPIO, HDMI, IR, UART, 
USB 

OrangePi 
Plus 2 

2 GB 2 450 Audio, Gigabit Ethernet, GPIO, HDMI, IR, TF, USB, WiFi 

BeagleBone 
Black 

512 MB 2 750 ADC, CANbus, Ethernet, GPIO, HDMI, I2C, 
eMMC/microSD,  

UP Squared < 8 GB 14 450 ADC, Gigabit Ethernet (x2), GPIO, HDMI, mini-PCIe/m-
SATA, MIPI (x2), RTC, USB2, USB3 

Xilinx Z-turn 1 GB 5 950 CANbus, Gigabit Ethernet, HDMI, TF Card, USB2-OTG, 
USB_UART 

* 50 Php = 1 USD 

Single-board computers pack an entire digital computer onto a single circuit 

board, complete with microprocessor(s), memory, Input/Output (I/O) and other features 

required of a functional computer (Johnston et al., 2018). Due to their relatively small 

size paired with high processing power compared to microcontrollers, they have been 

utilized in environmental applications, smart artificial vision systems, smart appliances, 

and smart cities (Gómez, 2015).  

There have been multiple single-board computers in the market since 2003; 

however, the Raspberry Pi was the first to be generally available to the public (Johnston 

et al., 2018). With its low-cost, better features, and widely debugged software, the 

Raspberry Pi has since led the market (Whytock & Christie, 2017). 
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Figure 3. Raspberry 3B+, a type of single-board computer, released in March 2018. 

Raspberry Pi. The Raspberry Pi, pictured in Figure 3, is a relatively cheap, 

flexible, and credit-card sized single-board computer that was originally designed for 

educational purposes. Its features include multiple USB ports for input (external 

microphone, cooling fan, keyboard, mouse, among others), built-in WiFi, and GPIO 

pins for other peripherals (clock modules, sensors, etc.) (Vujović & Maksimović, 

2014). The main programming language used in development for the Raspberry Pi is 

Python; however, it also supports other popular languages such as Java, C, C++, among 

others (Sachdeva & Katchii, 2014). Due to its low price and ease of use, the Raspberry 

Pi has become one of the most used devices in the development of technology-based 

studies. 

Flores et al. (2016) developed a precision agricultural monitoring system using 

the Raspberry Pi and deployed the said device in Cagayan de Oro, Philippines. The 

Raspberry Pi collects the data, sends them to sensor nodes, and stores it in a local 

database. Whytock and Christie (2017) also utilized the Raspberry Pi as the main 

component of the Solo audio recorder. The device is a good alternative to expensive 
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bioacoustic recorders in the market due to the low price of the single-board computer. 

Due to the features offered by the Raspberry Pi, the system is also highly customizable. 

The study will utilize the Raspberry Pi, the single-board computer used by 

Whytock and Christie in 2017, as the main component of the device. Specifically, the 

Raspberry Pi 3B+ (see Figure 3) will be used due to its availability and features relative 

to its price (see Table 1).  

Internet of Things (IoT) 

 Internet of Things (IoT) is an emerging technology which allows objects to 

communicate with one another, to approach information on the internet, to store and 

collect data via cloud, and to collaborate with other users (Rushikesh & Sivappagari, 

2016). With the help of IoT, there can be an interconnection of multiple devices that 

report, monitor, or provide other data or services (Atabekov, He, & Bobbie, 2016). 

 In a study conducted by Koshti and Ganorkar (2016), Arduino and Raspberry 

Pi were both used to implement a real-time monitoring system which observes a 

patient’s pulse rate. An embedded web server was generated in the Raspbian OS of the 

Raspberry Pi in order for the user to access the data and the equipment remotely. 

A system that controls electrical appliances using a smart phone operated 

android app was also designed (Shroff et al., 2017). Raspberry Pi 3B+ was used to 

perform IoT which sends the data captured from the web camera to the user with the 

android app. Raspberry Pi 3B+ has built-in WiFi unlike Raspberry Pi 2 and Arduino, 

making it an ideal device for IoT. 

 For this study, IoT will be used to gather data even without being physically 

present to check the deployed device. The study will also utilize Raspberry Pi 3B+, due 

to its built in WiFi, to perform IoT. Raspberry Pi 3B+ will send the collected data from 

LAMOC to the web server.  
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 Apache. The Apache HTTP Server, most commonly known as simply Apache, 

is an open-source web platform that is currently dominating the public internet market.  

The software is also free to use and exhibits great performance (Koshti & Ganorkar, 

2016; Fielding & Kaiser, 1997). This study will utilize Apache, but will employ the 

latest version as of writing (version 2.4) compared to Koshti and Ganorkar (2016) who 

used version 2.2. It will be used due to its ease of use in the Raspberry Pi. 

Programming Languages 

 Python. Python is an interactive, interpreted, and object-oriented programming 

language which provides a vast amount of features, such as high-level data structures, 

dynamic typing, modules, classes, exceptions, among others. Extension modules, also 

known as packages or libraries, can be installed in order to extend the language with 

new code (Sanner, 1999). For the past decade, SciPy, a Python library, is extensively 

used for interactive, exploratory, and computation-driven scientific research (Millman 

& Aivazis, 2011). 

 The project of Vaidya et al. (2017) utilized Python in order to create a smart 

home automation system with Internet of Things (IoT) functionality. It also uses the 

SciPy of Python for facial recognition with machine learning models. 

In this study, Python will be used in order to develop the program for the 

mosquito monitoring device. This is because Python is the main programming language 

for Raspberry Pi. 

MySQL & PHP. MySQL is a small and compact database management system, 

while PHP allows the development of dynamic content that can interact with databases. 

These two platforms are often used in conjunction for developing web-based software 

applications (Koshti & Ganorkar, 2016). 
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Rajalakshmi and Mahalkshmi (2016) utilized PHP in a study that developed an 

IoT-based crop-field monitoring and irrigation system. The language was used to parse 

the data and display it on an app. MySQL was used to develop the database system. 

The study will use these two platforms in order to develop an IoT platform and 

display it on a website instead of an application. This is due to the popularity and wide 

support for the two platforms in web development. 

Machine Learning 

Machine learning is explained as an application of artificial intelligence (AI) 

which gives the ability to enhance itself without the need of direct programming to 

systems (Expert System, 2017).  

Feature Extraction. Feature extraction can be accomplished by transforming a 

signal to a simpler parametric representation. It is important in the field of machine 

learning because it converts a huge amount of raw data to a much simpler form; hence, 

it eliminates inefficiency and increases the machine learning algorithm’s accuracy 

(Alim & Rashid, 2019). 

 Frequency Domain Analysis. Frequency domain analysis represents  signals 

in the form of magnitude vs frequency plot. In other words, this analysis shows the 

process on how the energy of a signal is transmitted over a range of frequencies. 

Moreover, frequency domain has details on the change of the phase that must be applied 

in each component of the frequency to retrieve the original time signal combined with 

all of the individual frequencies (Proakis & Manolakis, 1996; Alim & Rashid, 2019). 

This study will pattern its frequency domain analysis with the Alim and 

Rashid’s (2019) methodology wherein an audio signal will be the input which will then 

be divided into frames. Fast Fourier Transform (FFT) will then be administered in each 

frame to derive the frequency domain of the audio signal. 
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 Support Vector Machine (SVM). Support vector machine, a supervised 

learning algorithm, is often used for problems regarding categorization. Supervised 

learning algorithm learns from a labeled training dataset and makes an inferred function 

that predicts the output.  

The goal of SVM is to locate a plane with the maximum margin. This margin 

can be the largest distance between the data points of various classes. Maximized 

margin distance allots reinforcement to give a more confident classification for future 

data points. SVM implements the idea of mapping the input vectors of two classes into 

some higher N-dimensional space (where N pertains to the total number of features). 

These vectors can be distinctly classified by the optimal hyperplane, in which it is a 

linear decision function that has the highest maximum margin among the vectors of two 

classes (Cortes & Vapnik, 1995; Gandhi, 2018). Consequently, Cortes and Vapnik 

(1995) noticed that constructing the optimal hyperplane would only require a few 

training data (these are called support vectors) which ideally creates a line that is on the 

same line with other support vectors within the same class. 

 

Figure 4. Training data points which are designated as support vectors 
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Note. Adapted from Support Vector Machine - Introduction to Machine Learning 

Algorithms, by Gandhi, R. (2018). Retrieved from https://towardsdatascience.com/ 

support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47 

Even though the nature of an SVM is a binary classifier, there are many ways 

that can be done for it to categorize a sample from multiple classes. One such case was 

in the study of Li et al. (2017) where SVM was able to perform a multi-class 

classification. One-versus-one multi-class strategy was chosen, wherein a sample was 

tested to all classes, and the class that became positive in all the tests performed was 

labeled as the sample’s class. 

In the research conducted by Cao et al. (2019), different machine learning 

algorithms were compared as to which algorithm is more effective to use. Results 

showed that SVM is generally used for classification problems. In addition, SVM is 

advantageous since it is easy to use, can be optimized globally, and only requires a 

small sample size to perform. 

Liu & Cheng (2017) employed SVM to classify the cognitive diagnosis with 

different attributes. With relatively fewer sample sizes, the use of SVM gave on par 

results in terms of the classification accuracy rates with those acquired existing 

researches, both in the attribute and pattern levels. 

In this study, SVM will be used in order to identify the mosquito species. Based 

on the review above, it is the most fit algorithm to use according to the studies 

mentioned above. 

Caruana and Niculescu-Mizil (2004) states that mosquito monitoring can help 

the community by identifying when and where the said disease-carrying mosquito 

species are increasing in population. The traditional method of human-landing catch is 

the most straightforward, dependable, and recommended method, however, conducting 
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this method poses a lot of risks. With the implementation of bioacoustics, it can 

eliminate all these risks and ensure the accuracy of the monitoring. 

Using a Raspberry Pi 3B+ as the principal component of the device is practical 

due to its availability and features relative to its price. With its support for different 

kinds of advance-leveled programming languages (C, C++, Java, and Python) and its 

powerful CPU and program memory, the implementation of Frequency Domain and 

Support Vector Machine would be possible. 
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Methodology 

Process Flowchart 

 

Figure 5. Process flowchart for the study 

Hardware Design 

Material Procurement. The following materials were procured for device 

construction: Raspberry Pi 3B+ (the single board computer which is the main 

component of the device), external microphone (for recording audio), 32 GB microSD 

card (for storing files), powerbank (for supplying the power of the device), DHT22 

sensor (for sensing humidity and temperature), clock module (for keeping time), OL 

pellets (for attracting mosquitoes to the device), and ABS 3D-printer filament (for the 

enclosure of the device). 
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Figure 6. Device enclosure of LAMOC: (a) power bank layer, (b) RPi layer, (c) OL 

trap layer, and (d) dome layer 

Enclosure design. Autodesk® Fusion 360™ was used in order to design the 

enclosure for 3D-printing. The enclosure is divided into four main parts: the powerbank 

layer, the Raspberry Pi layer, the OL trap layer, and the dome (see Figure 6). The 

measurements for each layer are described in Table 2. 

The powerbank layer (see Figure 6a), with a height of 18 cm, length of 9cm, 

and width of 4 cm, serves as the stand of the device in order to place the other 

components on a higher level. 

Table 2. Measurements of the enclosure 

Layer Height (cm) Length (cm) Width  (cm) Radius (cm) 

Powerbank 18 9 4 - 

Raspberry Pi 4.2 - - 7.5 

OL Trap 2.9 - - 7.5 

Dome 7.5 - - 7.5 
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The second layer at the bottom is the RPi layer (see Figure 6b), which has a 

height of 4.2 cm and radius of 7.5 cm, holds the RPi fitted in the middle, the DHT-22 

(temperature and humidity) sensor glued on the roof, and the USB port of the 

microphone that extends to the dome. A slot for an external fan for the Raspberry Pi is 

also present in the enclosure. Enough holes are implemented in order to improve 

ventilation which prevents the microprocessor from overheating. 

The OL trap layer (see Figure 6c), with a height of 2.9 cm and radius of 7.5 cm, 

holds the OL pellets dissolved in water that serves as the bait for the mosquitoes. 

Sufficient space is also present in the case a lawanit paddle is to be placed. 

The topmost layer (see Figure 6d) is designed for sound to be recorded; thus, 

the shape of a dome is used. It has a height and radius of 7.5 cm, Dome-shaped materials 

are often concave-shaped in order to allow sound to travel across the dome and 

accumulate at a single focal point, making it an ideal shape for the top layer of the 

enclosure (Ismail and Eldaly, 2018). An attachment that can be used as a holder for the 

clip of the microphone is also present. 

 
Figure 7. Circuit and attachments of the device 
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Circuit Design. Figure 7 shows the designed circuit for the device. Raspberry 

Pi 3B+ is the main processor of the whole device. Sensors, specifically an external clock 

module and DHT-22, are connected to the single-board computer so as to record the 

time and temperature in real time. A microphone, which is connected to the RPi via an 

audio adapter, serves as the recording unit of the sound of the mosquitoes. In order for 

the circuit to work, Xiaomi Mi Power Bank 2C serves as the power source which is 

connected as well to the RPi. This power bank has an electrical capacity of 20 000 mAh 

and a 3.0 quick charge. 

 Enclosure Fabrication. Both the Ultimaker Original+ and the XYZprinting da 

Vinci 1.0 Pro 3D printers, located in the Fabrication Laboratory in PSHS-CLC, were 

used in order to produce the enclosure. Two machines were utilized in order to lessen 

the printing time of the enclosure. The parts were printed using acrylonitrile butadiene 

styrene (ABS) filament, one of the most commonly used 3D-printer filaments today. 

As opposed to other commercial filaments, ABS is an extremely durable material that 

can withstand higher temperatures, flexibility, and strength which makes it suitable for 

a device that is generally placed outdoors (Kumar et al., 2018). 

Software Design 

Sample collection. In order to utilize machine learning for species 

classification, audio samples were acquired. The sources of these audio recordings are 

shown in Table 3. Recordings with length 51 seconds were retrieved for each of the 

four classes (Culex sp., Anopheles sp., Aedes aegypti male, Aedes aegypti female). In 

addition, 51 seconds of common background noise (e.g. rustling leaves, banging stones, 

walking on ground, walking on grass, running water) was included as another class to 

simulate environmental conditions. 
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Table 3. Sources of audio recordings for machine learning 

Species Title Format 

Culex sp. Mosquito detection with low-cost smartphones: 
data acquisition for malaria research (Li et al., 
2017) 

.wav 

Anopheles sp. Using mobile phones as acoustic sensors for high-
throughput mosquito surveillance (Mukundarajan 
et al., 2017) 

.wav 

Aedes aegypti 
(male & female) 

Lone & Pair Mosquito Auditory Interaction 
(Homer et al., 2015) 

.h5 

 

 Program development. Next, the audio recordings were converted to 

frequency signals by using Fast Fourier Transform (FFT) in a computer. This extraction 

method was implemented using the NumPy 1.18.1 library for Python. Wingbeat 

frequencies were determined by analyzing the frequency signals. 

Using support vector machine (SVM), the training models for species 

identification are created. Since LAMOC uses binary SVM, a total of ten training 

models were created, namely 

1. Aedes aegypti (male) - Aedes aegypti (female) 

2. Aedes aegypti (male) - Anopheles sp. 

3. Aedes aegypti (male) - Culex sp. 

4. Aedes aegypti (male) - Background Noise 

5. Aedes aegypti (female) - Anopheles sp. 

6. Aedes aegypti (female) - Culex sp. 

7. Aedes aegypti (female) - Background Noise 

8. Anopheles sp. - Culex sp. 

9. Anopheles sp. - Background Noise 
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10. Culex sp. - Background Noise 

The 255 seconds recording was further divided to recordings with a length of 

46 milliseconds each before going through Fast Fourier Transform (FFT) that was then 

converted to its frequency domain. The power in the frequency domain was normalized 

to avoid the problem of inconsistent scale of the power across different recordings. 

These training models are transferred to the Raspberry Pi for species identification. 

 

Figure 8. Block diagram for the program running on the Raspberry Pi 

Acoustic Signal Recorder. Sound was first recorded from the mosquito using 

an external microphone connected to the Raspberry Pi. Ovicidal-Larvicidal (OL) trap 

was used to attract mosquitoes to the device. The Raspberry Pi was responsible for 

recording and storing the audio files for further processing using a developed Python 

program. 

The process of recording audio, classifying the species, and sending data to the 

server is performed by the Raspberry Pi. Using the wide array of libraries available for 

development, the program was written entirely in the Python programming language. 

Table 3 lists the required libraries and each of their specific functions. After installation, 

the code can be executed using the Raspberry Pi’s pre installed Python development 

software. 

Upon running the program for the first time in a new location, the Raspberry Pi 

will first record an audio sample that will be used for calibration in the environment. 

This recording has a sampling rate of 44 100 Hz, 2 channels, 16 bits per channel and 
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length of 51 seconds. The program uses this in order to adjust the models according to 

the level and type of background noise present in the area. 

Table 4. Python libraries used for file processing and classification 

Library Function Description 

os Operating 
System 

Performs operating system dependent functionality, 
such as renaming and removing files 

sys Runtime Allows access to variables used by the interpreter 

datetime Data Provides basic date and time information 

pyaudio Multimedia Records and plays audio streams 

wave Multimedia Reads and writes WAV audio files 

Adafruit_
DHT 

Sensor Obtains readings from temperature and humidity 
sensors connected to a Raspberry Pi 

mysql.con
nector 

Database Inserts data from the Python source code into a mySQL 
database and table  

scipy Data Gives access to modules for scientific and technical 
computing 

numpy Data Contains fundamental packages for array computing 

math Numerical Enables the use of mathematical functions 

statistics Numerical Adds functions for statistical computing  

libsvm Classification Provides functionality for support vector machine and 
supports multi-class classification 

 
 

After calibration, the program proceeds to a continuous loop for processing 

audio and uploading data. Figure 9 shows a flowchart that illustrates the process. The 

Raspberry Pi then records audio from the external microphone for two (2) seconds. The 

audio is saved as a .wav file and is given a temporary file name for further processing.  
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Figure 9. Flowchart for the Python program 

Frequency Analyzer. Audio recordings were converted to frequency signals 

using Fast Fourier Transform (FFT). This extraction method was implemented using 

the NumPy library for Python. Wingbeat frequencies were determined by analyzing the 

frequency signals. 

 Species Identifier. The program then feeds the audio recording to the support 

vector machine training models for multi-class classification. Although SVM is 

traditionally used as a binary classifier, it can also be used to categorize samples from 

multiple classes by testing a sample against all classes and finding the class that 

produced a positive result in all tests, as used by Li et al. (2017) in their study. The 

program uses the preinstalled training models to predict which of the two species the 

recording belongs to, and increments the dedicated variable for that class. This is 

repeated until the recording has been fed into all ten training models. 

The variable with the highest value will be deemed the species of the recording. 

If the variable for background noise is equal to four (4), which is the maximum score a 

class can have, the program will classify the audio recording as background noise and 

delete the temporary audio file. However, for accuracy testing purposes, the audio 
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recordings for background noise are saved in a different folder. Afterwhich, the 

program repeats its loop by returning to the first process indicated in the flowchart. 

 If the program classifies the audio file as a recording of a mosquito species, the 

Raspberry Pi proceeds to collect metadata for both renaming and uploading purposes. 

Date and time are obtained from the clock module, while temperature and humidity are 

logged by the DHT 22 sensor. The location is specified in the written code and may be 

edited if necessary. The temporary audio file is renamed for proper storage and easy 

access. The file name contains the date, time, species, location, and file format. 

Web Interface Development 

Lastly, the gathered data are uploaded into the mySQL database for viewing on 

the website. Apache web server, the most widely used open-source web platform, 

served as the host server. Meanwhile, PHP and MySQL were utilized to develop and 

manage the database. HTML and CSS were utilized to create the web interface. The 

home page of the website consists of the number of audio recorded, the amount of 

recordings for each species, date and time at access, and the location of the device (see 

Figure 10). On the “More” tab, all the recordings together with the metadata are 

displayed on a table. Each file contains a unique identification number, a button for 

audio playback, its identified species, specific location, date and time during recording, 

temperature, and humidity. There is also a “Print Page” function which allows the user 

to print the table or save it as a PDF file. Moreover, a survey was sent out to thirty-five 

respondents in order to test the usability and effectiveness of the constructed website. 
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Figure 10. Home page of the website that contains summary of the data and 

additional page that shows more information about each entry 

 Device Assembly. In this part, the developed program was uploaded to the 

tested prototype in which the data collected can be accessed through the developed web 

interface. Since this study is a developmental research, only one device was assembled 

and tested. 

 Device Deployment. For field testing, the criteria of the location for the device 

deployment is its accessibility to the researcher and its projected mosquito population. 

The device was deployed in a residential area in Capas, Tarlac to collect data (audio 

recording, temperature, and humidity) for three nights. The selected area is well-
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populated with greenery, making it a suitable testing area for recording mosquito 

sounds. The data recorded from the device was accessed via the server for LAMOC.  

 Data Analysis. The collected audio recordings were listened to one by one in 

order to ensure that the predicted categorization matches the real category. From this, 

confusion matrices were constructed and the accuracy rate of the device was derived. 

Three separate confusion matrices for each day and a specific confusion matrix for 

mosquito classification were constructed. Moreover, cross-validation was also used to 

identify the multi-class classification accuracy of the device.  
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Results and Discussion 

 LAMOC is a device that aims to automate the mosquito monitoring process 

using the Raspberry Pi, a 3D-printed enclosure, custom-built code, and classification 

training models. This section details the specifics behind the design of both the 

hardware and software of the device. Moreover, the process of improving the accuracy 

rate of the classification program is described. 

Device Accuracy 

Table 5. Confusion matrix for 3 days of field deployment (February 26-28, 2020)

 

On the first day of field testing of the device, 22 minutes worth of sound was 

recorded. It was then manually listened to and it was determined that no mosquito sound 

was present. In this case, the device should classify all the recorded sounds as 

background noise, however, only 86.91% was classified as background noise as shown 

in Table 5. An 86.91% accuracy in classifying a background noise as background noise 

is worrying because it means that eight minutes worth of audio is classified wrongly 

every hour.  

On the second day of field testing, the location where the device was tested was 

in a residential area in Capas, Tarlac. In order to solve the problem of low accuracy 
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when it comes to classifying background noise, the device was designed to first record 

the background noise in the location it will be deployed before starting the loop of audio 

recording and species classification. After implementing the adjustment, a clear 

improvement in accuracy (99.34%) was observed compared to the first day (86.91%) 

of testing as shown in Table 5. A total of 166 minutes of recording was listened to, and 

it was determined that no mosquito sound was present. 

On the third day of testing, a total of 170 minutes was listened to by the 

researchers, and it was determined that 32 seconds (0.33%) of it belonged to a mosquito. 

The device, however, managed to correctly classify only 26 seconds (0.27%) of the 

entire recording as mosquito sound, and the remaining 6 seconds (0.06%) was wrongly 

classified as background noise. On other hand, 160 minutes (97.77%) of the whole 

recording was correctly classified as background noise, but 3 minutes and 6 seconds 

(1.90%) of the entire recording was wrongly classified as mosquito sound as shown in 

Table 5. Overall, the accuracy of the device in classifying between a mosquito sound 

and background noise was 98.04%. 

For further improvement of the accuracy, it was decided that the mosquito sound 

recorded by the device on the third day of field testing would be integrated to the 

training pool of data. To avoid bias, the number of samples (n) was limited up to 1100 

only so that the training data set of each class would be balanced. In addition, instead 

of classifying the class of a 2-second audio recording, the program of the device was 

adjusted to check the class of the 50-millisecond sound clip. 

 

Table 6. Summary of confusion matrix for mosquito detection after integrating the 

mosquito sound procured on Day 3 of field testing. 
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To test the accuracy of the device with the addition of the 32-second Aedes 

aegypti (male) recording, a partially nested cross-validation (in which the parameter 

tuning was applied in a non-nested fashion) was used. A partially nested cross-

validation is suitable to use when the data procured is limited and when all the data 

available will be used in training the machine learning algorithm (Vabalas et al., 2019). 

The overall accuracy of the device was calculated using the confusion matrix 

given in Table 6. In terms of the device’s ability to differentiate a mosquito sound to a 

background noise, an accuracy of 90.47% was determined. Comparing this to a study’s 

(Li et al., 2017) overall accuracy of 80.25% that dealt with the identification of 

mosquito species using smartphones, LAMOC got a higher accuracy with 94.74%. 

Table 7. Accuracy rates for the five classes using cross-validation 

Class Aedes 
aegypti 
(male) 

Aedes 
aegypti 
(female) 

Anopheles 
sp. 

Culex sp. Background 
Noise 

Overall 
Accuracy 

Mean 99.30% 96.74% 92.09% 93.72% 90.47% 94.74% 

n 1100 1100 1100 1100 1100 5500 
 

For multiclass classification of the device, several adjustments were 

implemented. As shown in Table 7, Aedes aegypti (male) obtained the highest accuracy 

of 99.30% with a standard deviation of 1.12%, while the background noise got the 

lowest accuracy rate of 90.47% with a relatively high standard deviation of 9.83%. The 
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high accuracy of the program in correctly classifying Aedes aegypti (male) may be 

attributed to the fact that new sound files were integrated into the training pool of data, 

while the relatively low accuracy of the program in correctly classifying the background 

noise may be attributed to the fact that the background noise in the training pool data 

did not have a more distinctive features compared to the other classes. 

The program of this study obtained a higher accuracy compared to the multi-

class classification accuracy of the study of Li et al. (2017), wherein they also used 

support vector machine (SVM). Both studies had a class of Aedes aegypti, but their 

study only managed to acquire an 82% accuracy while this study managed to have an 

accuracy of 99.30% and 96.74% in Aedes aegypti (male) and Aedes aegypti (female), 

respectively. The difference in result may be attributed to the fact that the classes in 

their study may not have significant differences compared to this study. Another 

possible reason is their usage of mel frequency cepstral coefficient (MFCC) as the 

feature extraction method while this study used the frequency domain of the sound clip.  

Web Design 

Results of the survey show that the developed web site is user-friendly with the 

highest average rating of 4.83 (Figure 11). It is followed by satisfaction rating (4.77), 

efficiency and overall appearance (4.74), color scheme (4.71), and layout and usability 

(4.69). The rating of respondents on the layout and usability of the website has a higher 

variation compared to the other criteria. 
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Figure 11. Ratings of 35 respondents in a survey on the website 

 

Based on the rating scale used, the website is in between “excellent” and “very 

good”. With this, the overall average rating of 4.74 of the website indicates that it is a 

good platform for viewing the device’s collected data. Further editing of the parameters 

with the lowest scores, namely Layout and Usability, can be performed in order to 

improve the website. 
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Conclusions & Recommendations 

LAMOC was developed as an alternative to the expensive bioacoustic devices 

in the market and a solution to the unsustainable method of mosquito monitoring in the 

Philippines, where multiple  species of mosquitoes are especially prevalent. Using 

existing methodologies for machine learning and acoustic signal processing, the study 

succeeded in developing an acoustic signal monitoring device that detects the presence 

of mosquitoes. With an overall classification accuracy of 94.74%, LAMOC has shown 

to be a promising alternative to existing mosquito monitoring methods. Moreover, the 

device enclosure has been proven sturdy enough for deployment in a real-life setting. 

There were also no issues in accessing the collected data using the developed website. 

Thus, the development of LAMOC using the Raspberry Pi can be considered 

successful. 

As the device is still in its early development stage, there are many aspects that 

can be improved before mass deployment. Other machine learning algorithms that 

maximize both power and accuracy can be tested. On the physical aspect, different 

enclosure designs and high quality microphones that can further enhance sound quality 

can be used. Finally, further testing and debugging in large-scale platforms is highly 

recommended in order to refine and perfect the system of the device. 
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Appendix A 

Raw Data 

Audio Files 

Access raw audio files with this link https://tinyurl.com/lamocrawdata or 

https://drive.google.com/drive/folders/1LMuqLcniLh3Rqr3adVt1PSaMgXJpPEaw?us

p=sharing  

List of Folders and Files 

Aedes aegypti female (Homer et al., 2015) 

AedF1.h5 

 AedF2.h5 

 AedF3.h5 

 AedF4.h5 

 AedF5.h5 

 AedF6.h5 

 AedF7.h5 

 AedF8.h5 

 AedF9.h5 

 AedF10.h5 

 AedF11.h5 

 AedF12.h5 

 AedF13.h5 

 AedF14.h5 

 AedF15.h5 

 AedF16.h5 

 AedF17.h5 

 AedF18.h5 

 AedF19.h5

Aedes aegypti male (Homer et al., 2015) 

 

AedM1.h5 

 AedM2.h5 

 AedM3.h5 

 AedM4.h5 

 AedM5.h5 

 AedM6.h5 
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 AedM7.h5 

AedM8.h5 

 AedM9.h5 

 AedM10.h5 

 AedM11.h5 

 AedM12.h5 

 AedM13.h5 

 AedM14.h5 

 AedM15.h5 

 AedM16.h5 

 AedM17.h5 

 AedM18.h5 

 AedM19.h5 

 AedM20.h5 

 AedM21.h5 

 AedM22.h5 

 AedM23.h5 

 AedM24.h5 

 AedM25.h5 

 AedM26.h5 

 AedM27.h5

Anopheles sp. (Mukundarajan et al., 2017) 

 Anopheles albimanus       Anopheles stephensi 

 Anopheles quadriannulatus 

Background Noise 

 

Bamboo Rustling.wav 

 Basketball.wav 

 Blender.wav 

 Crushing Leaves.wav 

 Garden Ambience.wav 

 Garden Entrance.wav 

 Stone Banging 1.wav 

 Stone Banging 2.wav 

 Walking Garden.wav 

 Walking Grass.wav 

 Walking Ground.wav 

 Walking Stones.wav 

 Water Running.wav 

 

Culex sp. (Li et al., 2017) 

 Culex.wav 
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Appendix B 

Hardware Design 

 

 

Figure 12. 3D model of the hardware design via Autodesk Fusion 360.  

 
  



 
 

 

44 

Appendix C 

Code 

Cross Validation Code 

import math 
from scipy.fftpack import fft 
from scipy.io import wavfile 
import numpy as np 
from scipy import stats 
from svmutil import * 
import scipy.io 
import statistics 
 

def main(): 
   y = myCalibration("D:/ResearchData/Model/October/jarod.wav") 
   sample_AeM = y[:430, :] 
   #converting matlab matrix to numpy array of python 
   sample_AeF, sample_BG = 
matToNumpyArray("D:/ResearchData/Model/Matlab/model_AeF_BG.mat") 
   sample_C, sample_An = 
matToNumpyArray("D:/ResearchData/Model/Matlab/model_C_An.mat") 
 
   i = 1 
   final = list() 
   while i <= 10: 
       model_AeM_BG, test_AeM, test_BG, featurePos_AeM_BG = 
featureSelection(sample_AeM, sample_BG, i,toggle1=False) 
       model_AeM_AeF, featurePos_AeM_AeF = 
featureSelection(sample_AeM, sample_AeF, i) 
       model_AeM_C, featurePos_AeM_C = featureSelection(sample_AeM, 
sample_C, i) 
       model_AeM_An, featurePos_AeM_An = featureSelection(sample_AeM, 
sample_An, i) 
       model_AeF_BG, featurePos_AeF_BG = featureSelection(sample_AeF, 
sample_BG, i) 
       model_AeF_C, test_AeF, test_C, featurePos_AeF_C = 
featureSelection(sample_AeF, sample_C, i, toggle1=False) 
       model_AeF_An, featurePos_AeF_An = featureSelection(sample_AeF, 
sample_An, i) 
       model_C_An, featurePos_C_An = featureSelection(sample_C, 
sample_An, i) 
       model_C_BG, featurePos_C_BG = featureSelection(sample_C, 
sample_BG, i) 
       model_An_BG, test_An, featurePos_An_BG = 
featureSelection(sample_An, sample_BG, i,toggle=True) 
 
       key = 
{"AeM_BG":featurePos_AeM_BG,"AeM_AeF":featurePos_AeM_AeF,"AeM_C":feat
urePos_AeM_C, 
              "AeM_An":featurePos_AeM_An,"AeF_BG":featurePos_AeF_BG,"
AeF_C":featurePos_AeF_C, 
              "AeF_An":featurePos_AeF_An,"C_An":featurePos_C_An,"C_BG
":featurePos_C_BG,"An_BG":featurePos_An_BG} 
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       results = multiClassClassification(test_AeM, test_AeF, test_C, 
test_An, test_BG, model_AeM_BG, model_AeM_AeF, 
                                          model_AeM_C, model_AeM_An, 
model_AeF_BG, 
                                          model_AeF_C, model_AeF_An, 
model_C_An, model_C_BG,model_An_BG,key) 
 
       final.append(results) 
       i += 1 
   print(final) 
   aem = 0 
   aef = 0 
   c = 0 
   an = 0 
   bg = 0 
   for i in range(10): 
       aem += final[i][0]/43 
       aef += final[i][1]/43 
       c += final[i][2]/43 
       an += final[i][3]/43 
       bg += final[i][4]/43 
   print("AeM",aem*10,"%") 
   print("AeF",aef * 10, "%") 
   print("C",c * 10, "%") 
   print("An",an * 10, "%") 
   print("BG",bg * 10, "%") 
   print("done") 
 
def myCalibration(path): 
   """ 
   name: myCalibration. this function will convert wav audio file to 
its frequency domain 
   :param path: the directory of the wav file in which the fft will 
be applied 
   :return: cnt: a matrix where the row is the sample and the column 
is the feature of the sample 
   """ 
   frame_length = 2048 
   rate, data = scipy.io.wavfile.read(path) 
   cell_no = math.floor(len(data) / frame_length) 
   data = np.array(data[:cell_no * frame_length])  ##cutting the data 
so that it will be divisible to 2048 
 
   b = 0 
   while (b + 1) * frame_length < len(data): 
       x_n = data[(b * frame_length):(b + 1) * frame_length] 
       fft_out = fft(x_n) 
       y = np.fft.fftshift(np.abs(fft_out)) 
 
       y_new = y[round(len(y) / 2):] 
 
       max_amplitude = np.max(y_new) 
       y_new = y_new / max_amplitude 
       y_new = y_new[:362] 
 
       if b == 0: 
           cnt = y_new 
       else: 
           cnt = np.vstack((cnt, y_new)) 
       b += 1 
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   ##the result variable is cnt 
   ##cnt[x,y], x: different samples with a size of 362 ; y: features 
   # return cnt[39,:] --> this is a 1D array horizontal 
   return cnt 
 

def featureSelection(mat1, mat2, i,toggle=False, 
toggle1=True):     ##if toggle is True, it will return 
   """ 
   name: featureSelection. this function will create a binary 
classification svm model that can be used to predict a sample's 
class. 
   :param mat1: numpy.array (should have the same size with mat2) 
that will be used to create a model 
   :param mat2: numpy.array (should have the same size with mat1) 
that will be used to create a model 
   :param i: the iteration of the cross-validation currently being 
performed 
   :param toggle: (default: False). a param to indicate what to 
return 
   :param toggle1: (default: True). a param to indicate what to 
return 
   :return: depends on boolean value of the toggle and toggle1. 
   model (always): svm model created that will be used to predict 
another sample 
   mat1_test (when toggle=True or toggle=toggle1=False): test sample 
that will be used for validation 
   mat2_test (when toggle=False and toggle1=True or 
toggle=toggle1=False): test sample that will be used for validation 
   featureRankPosition (always): numpy.array that contains the index 
of the features that are important 
   """ 
   delList = list() 
   for j in range(43): 
       delList.append(j + ((i - 1) * 43))  ##delList that will delete 
the test data in train data 
 
   mat1_train = np.delete(mat1, delList, axis=0) 
   mat1_test = mat1[(i - 1) * 43:i * 43, :] 
 
   mat2_train = np.delete(mat2, delList, axis=0) 
   mat2_test = mat2[(i - 1) * 43:i * 43, :] 
 
   featureRank, p_value = np.abs(stats.ttest_ind(mat1_train, 
mat2_train, axis=0, equal_var=False)) 
   featureRankPosition = np.zeros(NUM_FEATURES) 
   resultingPos = np.zeros(2) 
   for k in range(NUM_FEATURES): 
       resultingPos = np.where(featureRank == 
np.amax(featureRank))  # finds position of max value 
       if np.shape(resultingPos[0]) != 1: 
           featureRankPosition[k] = resultingPos[0][0] 
           featureRank[resultingPos[0][0]] = 0 
       else: 
           featureRankPosition[k] = resultingPos[0] 
           featureRank[resultingPos[0]] = 0 
 

   mat1_train_featured = np.zeros((430 - 43, NUM_FEATURES)) 
   mat2_train_featured = np.zeros((430 - 43, NUM_FEATURES)) 
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   for l in range(NUM_FEATURES): 
       mat1_train_featured[:, l] = mat1_train[:, 
int(featureRankPosition[l])] 
       mat2_train_featured[:, l] = mat2_train[:, 
int(featureRankPosition[l])] 
 
   SIZE = 430 - 43 
   Y = np.zeros(SIZE * 2) 
   Y[:SIZE] = -1 
   Y[SIZE:] = 1 
 
   finalMat = np.vstack((mat1_train_featured, mat2_train_featured)) 
   prob = svm_problem(Y, finalMat) 
   param = svm_parameter('-s 0 -t 0 -c 30') 
 
   model = svm_train(prob, param) 
   if toggle: 
       return model, mat1_test, featureRankPosition 
   elif toggle1: 
       return model, featureRankPosition 
   else: 
       return model, mat1_test, mat2_test, featureRankPosition 
 

def multiClassClassification(test_AeM, test_AeF, test_C, test_An, 
test_BG, model_AeM_BG, model_AeM_AeF, 
                            model_AeM_C, model_AeM_An, model_AeF_BG, 
                            model_AeF_C, model_AeF_An, model_C_An, 
model_C_BG, 
                            model_An_BG,key): 
   """ 
   name: multiClassClassification. this is function will guess what 
class does a particular sample belongs to. For now, it was modified 
to return the accuracy of the multi-classification. 
   :param test_AeM: numpy.array of the AeM to be tested to determine 
the accuracy of the model (for validation) 
   :param test_AeF: numpy.array of the AeF to be tested to determine 
the accuracy of the model (for validation) 
   :param test_C: numpy.array of the C to be tested to determine the 
accuracy of the model (for validation) 
   :param test_An: numpy.array of the An to be tested to determine 
the accuracy of the model (for validation) 
   :param test_BG: numpy.array of the BG to be tested to determine 
the accuracy of the model (for validation) 
   :param model_AeM_BG: model to be used when comparing 
   :param model_AeM_AeF: model to be used when comparing 
   :param model_AeM_C: model to be used when comparing 
   :param model_AeM_An: model to be used when comparing 
   :param model_AeF_BG: model to be used when comparing 
   :param model_AeF_C: model to be used when comparing 
   :param model_AeF_An: model to be used when comparing 
   :param model_C_An: model to be used when comparing 
   :param model_C_BG: model to be used when comparing 
   :param model_An_BG: model to be used when comparing 
   :param key: dictionary that contains the index of the features to 
be retained on a specific binary classification 
   :return: an array that contains the accuracy of the multi-
classification in guessing the correct class of the test 



 
 

 

48 

   sample. the order is acc_aem,acc_aef,acc_c,acc_an,acc_bg 
respectively. 
   """ 
   test = np.vstack((test_AeM, test_AeF, test_C, test_An,test_BG)) 
   a = np.shape(test) 
   results = list() 
   acc_aef = 0 
   acc_aem = 0 
   acc_an = 0 
   acc_c = 0 
   acc_bg = 0 
   j = 0 
   x = np.zeros((1,NUM_FEATURES)) 
   for i in range(a[0]): 
 
       y = np.array([test[i, :]]) 
 
       AeF = 0 
       AeM = 0 
       An = 0 
       C = 0 
       BG = 0 
 
       try: 
           x = keyDecoder(y,key["AeF_BG"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_AeF_BG) 
           if statistics.mode(p_labels) == -1: 
               AeF += 1 
           else: 
               BG += 1 
           x = keyDecoder(y, key["AeM_BG"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_AeM_BG) 
           if statistics.mode(p_labels) == -1: 
               AeM += 1 
           else: 
               BG += 1 
           x = keyDecoder(y, key["An_BG"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_An_BG) 
           if statistics.mode(p_labels) == -1: 
               An += 1 
           else: 
               BG += 1 
           x = keyDecoder(y, key["C_BG"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_C_BG) 
           if statistics.mode(p_labels) == -1: 
               C += 1 
           else: 
               BG += 1 
           x = keyDecoder(y, key["AeM_AeF"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, 
model_AeM_AeF) 
           if statistics.mode(p_labels) == -1: 
               AeM += 1 
           else: 
               AeF += 1 
           x = keyDecoder(y, key["AeF_An"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_AeF_An) 
           if statistics.mode(p_labels) == -1: 
               AeF += 1 
           else: 
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               An += 1 
           x = keyDecoder(y, key["AeM_An"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_AeM_An) 
           if statistics.mode(p_labels) == -1: 
               AeM += 1 
           else: 
               An += 1 
           x = keyDecoder(y, key["AeF_C"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_AeF_C) 
           if statistics.mode(p_labels) == -1: 
               AeF += 1 
           else: 
               C += 1 
           x = keyDecoder(y, key["AeM_C"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_AeM_C) 
           if statistics.mode(p_labels) == -1: 
               AeM += 1 
           else: 
               C += 1 
           x = keyDecoder(y, key["C_An"]) 
           p_labels, p_acc, p_vals = svm_predict([], x, model_C_An) 
           if statistics.mode(p_labels) == -1: 
               C += 1 
           else: 
               An += 1 
 
           var = {'Aedes Female': AeF, 'Aedes Male': AeM, 
'Anopheles': An, 'Culex': C, 'Background': BG} 
           results.append(max(var, key=var.get)) 
 
       except: 
           results.append('Undetermined') 
 
       j = math.floor(i/43) 
 
       if results[i] == "Aedes Male" and j == 0: 
           acc_aem += 1 
       if results[i] == 'Aedes Female' and j == 1: 
           acc_aef += 1 
       if results[i] == "Culex" and j == 2: 
           acc_c += 1 
       if results[i] == 'Anopheles' and j == 3: 
           acc_an += 1 
       if results[i] == 'Background' and j == 4: 
           acc_bg += 1 
 
   acc = [acc_aem,acc_aef,acc_c,acc_an,acc_bg] 
   return acc 
 
def matToNumpyArray(loadMatY): 
   """ 
   name: matToNumpyArray. This function will seperate the two sample 
inside the .mat file and it will also convert it to a numpy array 
   :param loadMatY: directory of the .mat file 
   :return: 2 numpy.array. 
   resultMatA: a matrix where the row is the sample and the column is 
the feature of the sample. 
   resultMatB: a matrix where the row is the sample and the column is 
the feature of the sample. 
   """ 
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   matY = scipy.io.loadmat(loadMatY) 
   finalMatY = np.array(matY['train']) 
 
   delList = list() 
   for i in range(1100): 
       delList.append(i+1100) 
   MatA = np.delete(finalMatY,delList,axis=0) 
 
   delList = list() 
   for i in range(1100): 
       delList.append(i) 
   MatB = np.delete(finalMatY,delList,axis=0) 
 
   resultMatA = np.zeros((430,362)) 
   resultMatB = np.zeros((430, 362)) 
   for i in range(430): 
       resultMatA[i,:] = MatA[math.floor(1100/430*i), :] 
       resultMatB[i, :] = MatB[math.floor(1100 / 430 * i), :] 
 
   return resultMatA, resultMatB 
 
def keyDecoder(mat1_test,key): 
   """ 
   name: keyDecoder. this function will remove the features of the 
sample that are not important 
   :param mat1_test: numpy.array that contains the sample to be 
classified by the model 
   :param key: numpy.array that contains the index of the features to 
be retained 
   :return: numpy.array that only contains the important features 
   """ 
   mat1_test_featured = np.zeros((1,NUM_FEATURES)) 
   for l in range(NUM_FEATURES): 
       mat1_test_featured[0,l] = mat1_test[0,int(key[l])] 
 
   return mat1_test_featured 
 
NUM_FEATURES = 100 
if __name__ == "__main__": 
   main() 
 

Initialization Code 

import mysql.connector 
import Adafruit_DHT 
import datetime 
import pyaudio 
import wave 
import os 
import sys 
 
while True: 
   now = datetime.datetime.now() # Records date and time from clock 
module 
 
   # Parameters for audio recording 
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   CHUNK = 1024 
   FORMAT = pyaudio.paInt16 
   CHANNELS = 2 
   RATE = 44100 
   RECORD_SECONDS = 2 
   WAVE_OUTPUT_FILENAME = "/var/www/html/aud/recordTemp.wav" 
 
   p = pyaudio.PyAudio() 
 
   # Start recording 
 
   stream = p.open(format=FORMAT, 
                   channels=CHANNELS, 
                   rate=RATE, 
                   input=True, 
                   frames_per_buffer=CHUNK) 
 
   print("* recording") 
 
   frames = [] 
 
   for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): 
       data = stream.read(CHUNK) 
       frames.append(data) 
 
   print("* done recording") 
 
   stream.stop_stream() # End recording 
   stream.close() 
   p.terminate() 
 
   # Save recording as .wav file 
   wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') 
   wf.setnchannels(CHANNELS) 
   wf.setsampwidth(p.get_sample_size(FORMAT)) 
   wf.setframerate(RATE) 
   wf.writeframes(b''.join(frames)) 
   wf.close() 
 
   # Run audio recording to training model 
   from trainingModel import trainingModel 
   specI = trainingModel('/var/www/html/aud/recordTemp.wav') 
   print(specI) # Print identified species 
 
   if (specI == 'Background'): 
       os.remove("/var/www/html/aud/recordTemp.wav") # Delete 
recording if it is background noise 
   else: # Set identified species to variable for file name 
       if (specI == "Aedes aegypti (female)"): 
           specF = "AeF" 
       elif (specI == "Aedes aegypti (male)"): 
           specF = "AeM" 
       elif (specI == "Anopheles"): 
           specF = "Ano" 
       elif (specI == "Culex"): 
           specF = "Cul" 
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       # Record current temperature and humidity 
       DHT_SENSOR = Adafruit_DHT.DHT22 
       DHT_PIN = 17 
       humidityTemp, temperatureTemp = 
Adafruit_DHT.read_retry(DHT_SENSOR, DHT_PIN) 
       humi = round(humidityTemp,2) 
       temp = round(temperatureTemp,1) 
       print(temp) 
       print(humi) 
 
       # Save metadata as variables 
       dateI = now.strftime("%Y/%m/%d") 
       timeI = now.strftime("%I:%M:%S %p") 
       locI = "PSHS-CLC Clark" 
       datetimeF=now.strftime("%Y-%m-%d-%H:%M:%S") 
       locF = "PSHSCLCClark" 
 
       # Rename file to name with metadata 
       fileName = datetimeF + "-" + specF + "-" + locF + ".wav" 
       print(fileName) 
       os.rename("/var/www/html/aud/recordTemp.wav", 
"/var/www/html/aud/" + fileName) 
       linkI = "/aud/" + fileName 
 
       # Access server 
       mydb = 
mysql.connector.connect(host="localhost",user="username",password="",
database="lamoc") 
       mycursor = mydb.cursor() 
 
       # Insert data into server 
       sql = "INSERT INTO display (species, location,time,date,temp, 
humi,link) VALUES (%s,%s,%s,%s,%s,%s,%s)" 
       val = (specI,locI,timeI, dateI,temp, humi, linkI) 
       mycursor.execute(sql, val) 
 
       mydb.commit() 
 
       print(mycursor.rowcount,"inserted") 
 

trainingModel.py Code 
 
import math 
from scipy.fftpack import fft 
import numpy as np 
from svmutil import * 
import scipy.io 
import statistics 
 
def trainingModel(path): 
   """ 
   name: trainingModel. this function will convert a wav file to its 
frequency domain using fft 
   :param path: the directory of the wav file in which the fft will 
be applied 
   :return: myFunction(cnt): a string (the class that won out of 1-
vs-many comparison) 
   """ 
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   frame_length = 2048 
   rate, data = scipy.io.wavfile.read(path) 
   #cutting the audio so that it will be divisible to 2048 
   cell_no = math.floor(len(data)/frame_length) 
   data = np.array(data[:cell_no*frame_length]) 
 
   b = 0 
   while (b+1)*frame_length < len(data): 
       x_n = data[(b*frame_length):(b+1)*frame_length] 
       fft_out = fft(x_n) 
       y = np.fft.fftshift(np.abs(fft_out)) 
 
       #Cutting the negative data due to fft 
       y_new = y[round(len(y)/2):] 
 
       #normalizing the y-axis 
       max_amplitude = np.max(y_new) 
       y_new = y_new / max_amplitude 
 
       #362 features only was included so that 0 - 8000Hz frequency 
would only be included, instead of 0-22050Hz 
       y_new = y_new[:362] 
 
       if b == 0: 
           cnt = y_new 
       else: 
           cnt = np.vstack((cnt,y_new)) 
       b += 1 
 
   return myFunction(cnt) 
 
def myFunction(x): 
   #smv model were loaded for the comparison 
   model_AeF_BG = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_AeF_BG') 
   model_AeM_AeF = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_AeM_AeF') 
   model_AeM_BG = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_AeM_BG') 
   model_An_AeF = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_An_AeF') 
   model_An_AeM = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_An_AeM') 
   model_An_BG = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_An_BG') 
   model_C_AeF = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_C_AeF') 
   model_C_AeM = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_C_AeM') 
   model_C_An = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_C_An') 
   model_C_BG = svm_load_model('/usr/local/lib/python3.7/dist-
packages/libsvm/models/model_C_BG') 
 
   AeF = 0 
   AeM = 0 
   An = 0 
   C = 0 
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   BG = 0 
 
   #try-catch code where 1-vs-many comparison would be done 
   try: 
       p_labels, p_acc, p_vals = svm_predict([], x, model_AeF_BG) 
       if statistics.mode(p_labels) == -1: 
           AeF += 1 
       else: 
           BG += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_AeM_BG) 
       if statistics.mode(p_labels) == -1: 
           AeM += 1 
       else: 
           BG += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_An_BG) 
       if statistics.mode(p_labels) == -1: 
           An += 1 
       else: 
           BG += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_C_BG) 
       if statistics.mode(p_labels) == -1: 
           C += 1 
       else: 
           BG += 1 
 
       if BG == 4: 
           return 'Background' 
       
       p_labels, p_acc, p_vals = svm_predict([], x, model_AeM_AeF) 
       if statistics.mode(p_labels) == -1: 
           AeM += 1 
       else: 
           AeF += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_An_AeF) 
       if statistics.mode(p_labels) == -1: 
           An += 1 
       else: 
           AeF += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_An_AeM) 
       if statistics.mode(p_labels) == -1: 
           An += 1 
       else: 
           AeM += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_C_AeF) 
       if statistics.mode(p_labels) == -1: 
           C += 1 
       else: 
           AeF += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_C_AeM) 
       if statistics.mode(p_labels) == -1: 
           C += 1 
       else: 
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           AeM += 1 
 
       p_labels, p_acc, p_vals = svm_predict([], x, model_C_An) 
       if statistics.mode(p_labels) == -1: 
           C += 1 
       else: 
           An += 1 
       #print(AeF) 
       #print(AeM) 
       #print(C) 
       #print(BG) 
       var = {'Aedes aegypti (female)':AeF,'Aedes aegypti 
(male)':AeM,'Anopheles':An,'Culex':C,'Background':BG} 
       return max(var, key = var.get) 
 
   except: 
       return 'Undetermined' 
 
 
  




